Reduced Graphene Oxide/Gold Nanoparticles Modified Screen-Printed Electrode for the Determination of Palmitic Acid

نویسندگان

چکیده

Palm oil is one of the major oils and fats produced in world today. The quality palm crucial to be investigated, indices free fatty acid (FFA) content. Therefore, this study, an electrochemical approach for determination FFA has been explored as alternative replace conventional method (titration method). was developed based on electrochemically reduced graphene oxide (rGO) coupled with gold nanoparticles (AuNPs) deposited onto a screen-printed carbon electrode (SPCE) via drop-casting technique. voltammetric behaviour 2-methyl-1,4-naphthoquinone (VK3) presence palmitic at modified investigated acetonitrile/water mixture containing lithium perchlorate (LiClO4). detection reduction VK3 form corresponding hydroquinone which proportional concentration acid. Under optimum conditions, showed good linear relationship towards ranging from 0.192 mM 0.833 limit 0.015 mM. exploration system expected achieve high sensitivity excellent selectivity content oil.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltammetric determination of amitriptyline based on graphite screen printed electrode modified with a Copper Oxide nanoparticles

A novel electrochemical sensor was proposed for the determination of amitriptyline based on the copper oxide (CuO) nanoparticles modified graphite screen-printed electrode. CuO nanoparticles were used to enhance the surface area of the electrode and then improve the sensitivity of the electrochemical sensor. Amitriptyline electrochemical response characteristics of the modified electrode in a p...

متن کامل

Voltammetric determination of amitriptyline based on graphite screen printed electrode modified with a Copper Oxide nanoparticles

A novel electrochemical sensor was proposed for the determination of amitriptyline based on the copper oxide (CuO) nanoparticles modified graphite screen-printed electrode. CuO nanoparticles were used to enhance the surface area of the electrode and then improve the sensitivity of the electrochemical sensor. Amitriptyline electrochemical response characteristics of the modified electrode in a p...

متن کامل

Screen-printed Electrode Modified with Magnetic Core-shell Nanoparticles for Detection of Chlorpromazine

In the present study, magnetic core-shell manganese ferrite nanoparticles (MCMNP) were synthesized and used for construction of a magnetic core-shell manganese ferrite nanoparticles modified screen-printed carbon electrode (MCSNP-SPCE). Cyclic voltammetry was used to study the electrochemical behavior of chlorpromazine (CPZ) and its determination was conducted by applying square wave voltammetr...

متن کامل

A New Sensor Based on Graphite Screen Printed Electrode Modified With Cu-Nanocomplex for Determination of Paracetamol

Paracetamol is a non-steroidal anti-inflammatory drug used as an antipyretic agent for the alternative to aspirin. Conversely, the overdoses of paracetamol can cause hepatic toxicity and kidney damage. Hence, the determination of paracetamol receives much more attention in biological samples and also in pharmaceutical formulations. Here, we report a rapid<span id="transmark" style="display: non...

متن کامل

Electrochemical Behavior and Determination of Chlorogenic Acid Based on Carbon Nanotubes Modified Screen-Printed Electrode

In this paper, carbon nanotubes modified screen-printed electrode (CNTs/SPE) was prepared and the CNTs/SPE was employed for the electrochemical determination of antioxidant substance Chlorogenic acids (CGAs). A pair of well-defined redox peak of CGA was observed at the CNTs/SPE in 0.10 mol∙L-1 acetic acid-sodium acetate buffer (pH 6.2) and electrode process is adsorption-controlled. Cyclic volt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Sensors

سال: 2021

ISSN: ['1687-725X', '1687-7268']

DOI: https://doi.org/10.1155/2021/6684770